
RGBoost: A revised gradient boosting machine ∗

Nanyi Zhang†

Abstract

This paper presents a novel variant of the gradient boosting algorithm, termed RGBoost, that en-

hances performance by modifying the negative gradient in every iteration. We begin by offering a precise

definition of the gradient, drawing upon the Riesz representation theorem. We then establish that in the

conventional gradient boosting algorithm, the gradient vector exhibits bias when the hypothesis space is

a Reproducing Kernel Hilbert Space (RKHS). By rectifying this bias, the adjusted gradient vector pro-

vides a more accurate approximation of the gradient function. Conclusively, through a series of tests on

simulated data, we show that our revised model significantly surpasses the performance of the traditional

model.

Keywords: Gradient boosting, Reproducing Kernel Hilbert Space(RKHS), Function Approximation,

investment

∗Nanyi Zhang is at School of Insurance and Economics, University of International Business and Economics, Beijing 100029,
China.

†Corresponding author. Email: nymath@163.com

1

1 Introduction

Gradient Boosting Machines (GBMs) are highly effective machine learning algorithms extensively utilized

for diverse tasks including regression and classification. They build a robust learner by sequentially amal-

gamating weak learners, exhibiting remarkable performance across various datasets. Consequently, GBMs

have emerged as a highly esteemed model in statistical learning, with the entire process often viewed as a

variational method where the functional gradient algorithm strives to optimize the goal function.

The concept of boosting weak learners was first proposed by Freund with Adaboost, followed by Schapire [3].

Friedman later introduced a gradient boosting-based algorithm [4], and the concept of gradient boosting has

since been further developed and expanded. In 2001, Breiman introduced Random Forest, a variant of

gradient boosting that combines decision trees and random subspace sampling to enhance the algorithm’s

performance [1]. Subsequently, Hastie, Tibshirani, and Friedman developed Gradient Boosted Regression

Trees (GBRT) in 2006, combining decision trees and gradient boosting to create a powerful and flexible

machine learning algorithm for regression problems. In 2015, Chen introduced XGBoost, a widely-used

implementation of GBM based on decision trees, employing a novel regularization technique to prevent over-

fitting [2]. XGBoost incorporates advanced features such as parallel processing, distributed computing, and

early stopping, and has been widely adopted in both industry and research, winning numerous machine

learning competitions.

Microsoft introduced another implementation of GBM, LightGBM, in 2017 [6]. LightGBM uses a novel

histogram-based approach to accelerate gradient computation and includes advanced features such as cat-

egorical feature handling and GPU acceleration. LightGBM has been shown to outperform other popular

gradient-boosting algorithms in terms of speed and accuracy. These related works have significantly advanced

the field of gradient boosting, making it a popular and powerful machine learning technique.

Traditional boosting algorithms often use decision trees as base learners due to their simplicity. However,

there is no restriction on the type of base learners that can be employed. The gradient boosting algorithm

can be viewed as an approximated functional gradient descent process, wherein a base learner is chosen to

approximate the gradient function queried at (x1, · · · , xn) in the L2 norm.

Many studies have focused on choosing different types of base learners, such as Generalized Linear Models

(GLMs), Kernel functions, splines, and others. Some research has also attempted to combine different base

learners within the boosting framework. For example, Sigrist [10] and Hoffmann [5] achieved lower bias and

error by combining various base learners.

Nonetheless, limited research has been conducted on modifying the negative gradient vector, a critical

element in each iteration. We argue that the negative gradient vector used by Friedman [4] is biased and

propose a superior alternative by assuming the hypothesis space is a Reproducing Kernel Hilbert Space

(RKHS).

2

To validate our model’s effectiveness, we first introduce the concept of Frchet derivatives, essential in

functional analysis. We then examine the differential of functionals in function space, playing a crucial role

in mathematical analysis. By providing a clear definition of the gradient using the Riesz representation

theorem, we establish a rigorous framework for understanding the concept of the gradient in functional

spaces. Next, by employing the chain rule of Frchet derivatives, we calculate the gradient of the empirical

loss function and embed it into the boosting algorithm. Finally, simulated data verifies our model’s accuracy,

with the revised model exhibiting a faster convergence rate and smaller test error.

The remainder of this paper is organized as follows: Section 2 introduces functional analysis concepts and

derives an alternative negative gradient vector. We then discuss the regression range and determine which

function our model will approximate. In Section 3, we design the gradient boosting machine and introduce

the rgboost package in Python. Section 4 presents a series of experiments on simulated data to validate

our model’s effectiveness.Lastly, Section 5 concludes the paper and highlights its contributions to the field

of gradient boosting.

3

2 The model

In this section, we explore foundational concepts in functional analysis and refine the definition of the

gradient using the Riesz Representation Theorem. We then compute the gradient of the empirical loss

functional under the assumption that the hypothesis space is a Reproducing Kernel Hilbert Space (RKHS).

Our analysis uncovers a bias in the gradient estimation step of Friedman’s boosting algorithm. To rectify

this bias, we propose using the vector, derived from evaluating the gradient function at sample points, as

the negative gradient vector in our boosting algorithm.

The objective of a gradient-boosting machine is to pinpoint an element within the hypothesis space that

minimizes the empirical loss function. This goal is typically achieved via a gradient descent algorithm that

operates within a functional space. However, performing gradient descent in such a space requires the use of

more advanced mathematical tools. Thus, we initiate this section by presenting the necessary preliminaries

in functional analysis.

2.1 Preliminaries

To provide a more detailed description of our model, we first introduce some notions in functional analysis.

Let H be a vector space. We define the evaluation functional Ex as the function that maps a functional in

H to its function value at x. Specifically, let

Ex : H → R, f 󰀁→ f(x). (1)

Observe that Ex(f + g) = (f + g)(x) = Ex(f)+Ex(g), which implies that Ex is a linear functional on H.

In Equation 1, we use the notation H to represent a function space because H often stands for the

hypothesis space or the Hilbert space. A Hilbert space is a complete inner product space. The norm

measures the distance between vectors, while the inner product can describe the correlation between two

elements in a space. Since we need to discuss certain analytic properties, such as continuity, differentiability,

or general limits, we require a complete space in which every Cauchy sequence has a limit. This is where a

Hilbert space comes into play. It combines the aforementioned requirements and is thus widely used in this

context.

Another crucial concept is the Frechet derivative. The Frechet derivative is a method to extend the

derivative to function spaces. It measures the rate of change of a functional under small perturbations of

its arguments. The Frchet derivative is defined as the best linear approximation of the functional at a given

point. Specifically, we define the Frchet derivative of f as a map from X to a linear functional Df,x on X ,

Df : intX → B(X ,Y), x 󰀁→ Df,x.

4

To get an insight into Df , we take a multivariate function as an example. In calculus, we have that.

Df,x0 =

n󰁛

i=1

∂fi(xo)dxi.

Where

dxi : Rn → R, h 󰀁→ hi.

Note that dxi is the dual bases on Rn with respect to standard normal basis, since

dxi(ej) = δij .

Next, we will introduce a widely used theorem for understanding function spaces’ structure. This theorem

has many applications in mathematics, physics, and even economics. For example, the Riesz representation

theorem in finance implies that a payoff can represent any linear functional on the asset span.

Theorem 1 (Riesz Representation Theorem).

Suppose ϕ is a bounded linear functional on a Hilbert space V . Then there exists a unique h ∈ V such that

ϕ(f) = 〈f, h〉, f ∈ H.

The Riesz Representation Theorem is a cornerstone in functional analysis, establishing a one-to-one

correspondence between linear functionals on a Hilbert space and the elements within that space. Specifically,

it stipulates that for any bounded linear functional f on a Hilbert space H, there exists a unique element h

in H such that ϕ(f) = 〈f, h〉 for all f in H. Here, 〈·, ·〉 denotes the inner product on H.

In a complete normed vector space, the continuity of a linear functional is equivalent to its boundedness.

Given the essential role of the evaluation functional in our model, we require a more suitable space to explore

it. It’s important to note that not all evaluation functionals of a Hilbert space are bounded. To satisfy the

Riesz Representation Theorem’s requirements, we define the Reproducing Kernel Hilbert Space (RKHS) as

a space wherein every evaluation function is bounded, even though they may not consistently be so.

Defintion 2 (RKHS).

Let X be a set and H a Hilbert space with H ⊂ RX . If the evaluation functional Ex over H is bounded. (or

equivalently, continuous), then we say H is a Reproducing Kernel Hilbert Space.

Since the evaluation functional on H is bounded, the Riesz Representation Theorem suggests that there

exists a unique vector Kx ∈ H which satisfies the following

f(x) = Ex(f) = 〈f,Kx〉H.

5

Also

Kx(y) = Ey(Kx) = 〈Kx,Ky〉H.

This allows us to define the reproducing kernel of H as a function.

K : X ×X → R, (x, y) 󰀁→ K(x, y) = 〈Kx,Ky〉H.

However, in practical applications, confirming whether the evaluation functional in a Hilbert space is

bounded can be challenging. Even if it is bounded, the Riesz representation theorem only informs us of the

existence of a kernel but does not give the analytic expression of the kernel. As a result, we commonly rely

on a symmetric and positive definite function to construct a Hilbert space, known as the Moore-Aronszajn

theorem.

Theorem 3 (Moore-Aronszajn).

Suppose K is a symmetric positive definitive function on X ×X. Then there is a unique Hilbert Space of

functions on X for which K is a reproducing Kernel.

Next, we will give a better definition of the gradient. First, recall the definition of the gradient in calculus.

It is a vector that points in the direction of the steepest increase of the function at a particular point. It

can be calculated by taking the partial derivative with respect to each coordinate. The inner product of a

gradient and the increment can be viewed as the linear approximation of the increment of the function value.

This idea can be directly extended to a function space. Specifically, suppose H is a normed vector space,

and L is a function defined at x0 ∈ H. We know that L is Frechet differentiable on H if and only if

L(x0 + h) = L(x0) +DL,x0
(h) + ex0

(h), ∀h ∈ H. (2)

Where DL,x0
is a linear functional on H and the error part must moves faster to zero than h, that is

lim
h→0

ex0(h)

󰀂h󰀂 = 0.

Note that the zero on the right side of the above equation is the additive identity(0 : H → R, f 󰀁→ 0) in H

rather than the real number 0.

Now, the Riesz Representation Theorem ensures a unique vector g(x0, L) ∈ H exists and has the following

property:

DL,x0(h) = 〈h, g(x0, L)〉.

This reminds us to define the gradient of function as the unique element in the Hypothesis space that

represents the Frechet derivative of the functional.

6

Suppose f is a multivariate function; according to our definition, the gradient of f at x0 is the Jacobian

matrix of f as x0.

∇f(x0) = Jx0

f = (∂1f(x0), · · · , ∂nf(x0)).

Next we introduce the gradient of evaluation functional.

Theorem 4 (Gradient of the evaluation functional).

Suppose H is an RKHS. Then the gradient of the evaluation functional at f when given x is

∇Ex(f) = Kx ∈ H.

Proof.

Ex(f + h) = Ex(f) + Ex(h)

= Ex(f) + 〈Kx, h〉+ 0.

The Riesz Representation theorem admits the uniqueness of Kx.

Suppose 󰀂h󰀂 = 1, we have the following:

L(f0 + h)− L(f0) ∼ 〈∇L(f0), h〉

≥ −󰀂∇L(f0)󰀂.

This provides a way to find the local minimum of a functional. Indeed, the equation above suggests

that L moves the fastest when walking along the gradient’s direction, thus giving us an idea to minimize a

functional. We state this in Algorithm 1.

7

Algorithm 1: Function Gradient descend algorithm

Input:

• the functinal L : V → R.

• number of iterations M ≥ 1

• leanring rate η ∈ (0, 1]

1 Initialize f0

2 while m ∈ {1, · · · ,M} do

3 Calculate the gradient:

∇L(fm−1)

4 Find the best gradient descent step-size:

ρm = argmin
ρ∈R

L(fm−1 − ρ∇L(fm−1)))

5 Update:

fm ← fm−1 − ηρm∇L(fm−1)

6 end

Output: fM

Algorithm 1 is a powerful tool for solving some variational problems. At each iteration, we first calculate

the gradient of loss functional and then find the best gradient descent step size using linear search. However,

calculating the gradient of a functional raises a problem since the Riesz representation theorem can only

ensure the existence of a gradient. One solution is to find an element in the hypothesis space as close to the

gradient as possible.

Since the gradient function can only be observed at finite sample points, we focus on the empirical case.

Our goal is to find the local minimum of L, where

L : H → R, f 󰀁→ 1

n

n󰁛

i=1

L(yi, f(xi)). (3)

Before starting the gradient descent algorithm, we define another functional L′, which is derived from L:

L′ : Rn → R, h 󰀁→ 1

n

n󰁛

i=1

L(yi, hi), (4)

where hi represents the i-th coordinate of vector h. Next, we will examine the relationship between L and

8

L′. To simplify the notation, let ŷ = (f(x1), · · · , f(xn))
T . By definition, we have L(f) = L′(ŷ). Now, we

will calculate the gradients of L and L′.

∇L′(ŷ) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1
n∂2L(y1, f(x1))

1
n∂2L(y2, f(x2))

...

1
n∂2L(yn, f(xn))

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

(5)

With knowledge of calculus, the gradient of a multivariate function is composed of partial derivatives,

as shown in Equation (5). The negative gradient vector in Friedman’s boosting algorithm is represented

by ∇L′(ŷ). Algorithm 2 outlines the implementation of this algorithm. Note that ∂2L refers to the partial

derivative of the second component.

Algorithm 2: Friedman’s Gradient Boosting algorithm

Input:

• the functinal L : V → R.
• number of iterations M ≥ 1

• leanring rate η ∈ (0, 1]

1 Initialize F0 = argminρ
󰁓n

i=1 L (yi, ρ)

2 while m ∈ {1, · · · ,M} do

3 Calculate the negative gradient:

gm,i = −
󰀗
∂L (yi, F (xi))

∂F (xi)

󰀘

F (x)=Fm−1(x)

, i = 1, · · · , n

4 Fit a base estimator:

am = argmin
a,β

n󰁛

i=1

[gm,i − βh (xi;a)]
2

5 Find the best gradient descent step-size:

ρm = argmin
ρ

n󰁛

i=1

L (yi, Fm−1 (xi) + ρh (xi;am))

6 Update:

Fm(x) = Fm−1(x) + ρmh (x;am)

7 end

Output: FM

9

In order to maintain consistency with our model’s notation, we will list the algorithm without changing

any symbols. However, note that the notation ∂L(yi,F (xi))
∂F (xi)

is equivalent to ∂2L(yi, F (xi)).

In step 4 of the algorithm, a base learner is chosen to fit the gradient vector in L2 norm at sample points.

This learner can be viesw as the gradient function in algorithm 1.

2.2 The revised gradient boosting machine

In this part of the section, we unveil our revised model. It is crucial to note that the negative gradient

vector in Algorithm 2 signifies the gradient of the derived empirical loss functional L′, not the gradient of

L. Although calculating the gradient of the empirical loss functional L at f may seem daunting, Theorem

4 provides an explicit expression for it.

Theorem 5 (The gradient of empirical loss function).

Suppose H is a RKHS with kernel K defined on it. Then the gradient of the empirical loss function L can

be expressed as

∇L(f) = 1

n

n󰁛

i=1

∂2L(yi, f(xi))Kxi .

Proof. The proof can be found in the Appendix A.

Here ∇L(f) is a functional on X and it can only be observed at finite sample points. For example

∇L(f)(x1) =
1

n

n󰁛

i=1

∂2L(yi, f(xi))K(xi, x1).

And we have the following relationship,

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

∇L(f)(x1)

...

∇L(f)(xn)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

=

󰀥
1
n∂2L(y1, f(x1)), · · · , 1

n∂2L(yn, f(xn))

󰀦

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

K(x1, x1) · · · K(x1, xn)

...
...

K(xn, x1) · · · K(xn, xn)

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= (∇L′(ŷ))TK.

We now claim that ∇L′(ŷ) is not always equal to the gradient function ∇L(f) which evaluated at sample

10

points. In fact, they are the same if and only if

K(xi, xj) = χ{xi}(xj) = δij ,

where χ is the characteristic functional of set. Based on the result of theorem 5, we revise the step 3 in

Friedman’s gradient boosting algorithm in algorithm 3.

Algorithm 3: The Revised Gradient boosting algorithm

Data: D = {(y1, x1), · · · , (yn, xn)}

Input:

• the hypothesis H and the reproducing kernel K.

• the empirical loss function L : H → R

• number of iterations M ≥ 1

• leanring rate η ∈ (0, 1]

1 Initialize f0, f0(x) = argminc∈R
1
n

󰁓n
i=1 L(yi, c) for all x ∈ Rp.

2 while m ∈ {1, · · · ,M} do

3 Calculate the negative gradient vector:

gm,j = − 1

n

n󰁛

i=1

∂2L(yi, fm−1(xi))K(xi, xj), j = 1, 2, · · · , n.

4 Fit the gradient vector:

hm = argmin
h∈H,β

n󰁛

i=1

(gm,i − βhm(xi))
2

5 Find the best gradient descent step-size:

ρm = argmin
ρ∈R

L(fm−1 + ρhm)

6 Update:

fm ← fm−1 + ηρmhm

7 end

Output: fM = f0 +
󰁓M

i=1 ηρmhm

Algorithm 3 is a revised version of the gradient boosting machine. In Step 1, we search for a constant

function that minimizes the empirical loss function. If we apply the square loss function, this constant must

be the sample mean of y. In Step 3, we substitute the gradient based on Theorem 5.

11

2.3 Statistical theory of regression

This subsection delves into the statistical theory underpinning regression. As previously highlighted, gradient

boosting machines (GBM) serve as an approximation tool for the function minimizing the empirical loss

function. Thus, the choice of the loss function and function to be approximated warrants discussion. We

elucidate the statistical theory of regression, demonstrating that GBM can approximate the conditional

expectation function m(x) = E(Y |X = x) using the L2 loss function.

To elucidate these concepts, we examine them within the context of measure theory. We commence with

a measurable space, comprising a set and a sigma-algebra defined on it. A measure, a set function adhering to

countable additivity, can be established on this measurable space. Integration with respect to measure boasts

superior attributes compared to Riemann integration encountered in calculus. Despite the intuitiveness of

Riemann integration, it loses its effectiveness when the function is defined in an abstract space. Conversely,

Lebesgue integration overcomes these limitations, offering numerous advantages over Riemann integration.

Its primary strength lies in its generality, as it accommodates a broader set of functions, including those

not Riemann integrable. Lebesgue integration is also more flexible, allowing for the integration of functions

with respect to more diverse measures, not just the Lebesgue measure. Its superior convergence properties

compared to Riemann integration further enhance its appeal, making it especially apt for various analysis

and probability theory applications. The integration of a random variable with respect to a probability

measure bears a relationship with Lebesgue-Stieltjes integration.

Theorem 6 (Measure transformations).

Suppose (Ω,F) and (E, E) are two measurable spaces, f : Ω → E, g : E → R. Then we have the following

󰁝

Ω

g ◦ fdP =

󰁝

E

g ◦ Idµf , (6)

where I : E → E, x 󰀁→ x.

Proof. The proof can be found in the Appendix.

Theorem 6 has many applications in probability theory. For example, we can calculate the expectation

of g(X) by using the formula E(g(X)) =
󰁕
R g(x)dFX(x).

The objective of regression is to identify the conditional expectation function, which is a key concept

in probability theory and statistics. It represents the anticipated value of a random variable based on

certain information provided by another random variable. Appendix B provides a definition of conditional

expectation, as well as its properties. According to the following theorem, the conditional expectation with

respect to a sigma-algebra generated by a random map can be expressed as a borel-measurable function

composition of this random map.

12

Theorem 7. Suppose X : Ω → Rp, X is random vevtor, then there exists a borel-measurable function f

Rp → R, such that

E(Y |σ(X)) = f ◦X

Proof. The proof can be found in Appendix A.

The converse of Theorem 7 is also true, and it provides an efficient method for calculating the conditional

expectation function so long as the sigma algebra is generated by a random map, since E(Y |X = x) can

often be easily obtained.

Theorem 8 (The connection between different types of contional expectations).

Suppose m : Rp → R, x 󰀁→ E(Y |X = x) is a borel-measurable function, then

m ◦X = E(Y |σ(X)). (7)

Proof. The proof can be found in Appendix A.

To gain a deeper understanding of conditional expectation and regression, we relax the restrictions on

Y slightly. Specifically, we assume that Y ∈ L2(Ω,F , P) and G is a sub-sigma-algebra of F . We can then

consider the space L2(Ω,G, PG), which is a closed subspace of L2(Ω,F , P). According to the Hilbert project

theorem, there exists a unique element M in L2(Ω,G, PG) such that

󰀂Y −M󰀂2 ≤ 󰀂Y − f󰀂2, ∀f ∈ L2(Ω,G, PG), (8)

and

Y −M ⊥ f, ∀f ∈ L2(Ω,G, PG).

The partial average of M is equal to that of Y , making it sufficient to serve as a conditional expectation. In

this sense, we can see the conditional expectation as a projection onto the subspace created by G. Figure

1 reveals the relationship of Y , E(Y |G) and E(Y). Note that the variance decomposition formula is the

Pythagoras theorem in a Hilbert space.

V ar(Y) = V ar(E(Y |X)) + E(V ar(Y |X)). (9)

The regression model can be structed as follows, suppose we have a random variable Y defined on a

probability space (Ω,F , P), and a random map X from Ω to a vector space E (often denoted as Rp). We

13

MSE

MSR

MST

Y

E(Y)

E(Y |G)

Mean Square of Regression

Mean Square of Total

Mean Square of Error

Random Variable

Conditional Expectation

Expectation

Figure 1: Conditional Expectation as a projection.

can express Y as the sum of its conditional expectation E(Y |X) and the error term Y −E(Y |X), which can

be written as m ◦X + ε.

To estimate the conditional expectation from sample data, we need to minimize the empirical loss func-

tion:

argmin
f∈H

1

n

n󰁛

i=1

(yi − f(xi))
2,

where yi is the value of Y and xi is the value of X in the i-th sample, and H is a suitable class of

functions. The goal is to find a function f that minimizes the difference between the predicted values and

the actual values, as measured by the mean squared error.

There are many ways to optimize the empirical loss function. One of the simplest ways is to parameterize

it. For instance, we can set the form of the hypothesis as follows:

There are various methods to optimize the empirical loss function. One of the simplest ways is to

parameterize it. For example, we can define the form of the hypothesis as follows:

H =
󰀋
f : Rp → R, x 󰀁→ c+ βTx|where β ∈ Rp, c ∈ R

󰀌
. (10)

14

In this case, the problem can be converted to:

argmin
β∈Rp+1

1

n

n󰁛

i=1

(yi − βT x̃i)
2,

where H is often referred to as the collection of affine functions, and the β that minimize the square loss is

β̂ = (XTX)−1XTY.

The hypothesis space can also be represented as a reproducing kernel Hilbert space (RKHS). Assuming that

K : Rp × Rp → R is a positive definite kernel function, there exists an inner product in H such that Kx

belongs to H for all x ∈ Rp. According to the representer theorem [9], there is a unique minimizer in the

form of

f =

n󰁛

i=1

αiKxi

Moreover, the GLM can be utilized as a Hypothesis. In this scenario, H can be expressed as follows:

H =
󰀋
f : Rp → R, x 󰀁→ g−1 ◦ (c+ βTx)|where β ∈ Rp, c ∈ R

󰀌
, (11)

Here, g−1 refers to the inverse of the canonical link function and varies for different cases.

Table 1: The Canonical Link Function of GED.

Distribution Mean Function Canonical Link Function

N(µ,σ2) b′ : θ 󰀁→ θ g : µ 󰀁→ µ

Pois(λ) b′ : θ 󰀁→ eθ g : µ 󰀁→ lnµ

Bin(1, p) b′ : θ 󰀁→ 1
1+e−θ g : µ 󰀁→ ln µ

1−µ

15

3 GBM Design

In this section, we will list the alternative loss functions and base learners, and explain when they can be

used. Later, we will discuss some improvement approaches to GBM, such as combining different types of

base learners, regularization, subsampling, and others. For more information about the design of GBM, we

refer to NateKin [7].

To create a GBM for a particular task, it’s important to choose the appropriate options for the empirical

loss function L and the hypothesis H (which is the set of collections of base learners), because these choices

have a significant impact on the GBM’s performance. (As we discussed in the previous section, the conditional

expectation function minimizes the L2 loss.)

3.1 Loss functions

The loss function is a critical element of the gradient boosting machine, as it quantifies the discrepancy

between the anticipated and actual values of the target variable. The selection of loss functions (functionals)

depends on the objective of our model. For instance, if the goal is to obtain the conditional expectation of

the response given X, the square loss function (L2 loss) is preferable since the conditional expectation can

be considered as the projection of the response, thus attaining the smallest L2 distance to the response. To

use a loss function in practice, one must specify both the loss and the corresponding negative gradient. (In

our Python module, the loss function is defined as an abstract class with attributes ”loss” and ”negative

gradient”.) Other loss functions are provided in Schmid et al., 2011 [8].

The types of loss functions can be roughly divided according to the type of response as follows:

1. Continuous response:

• L2 loss (Conditional Expectation)

• L1 loss (Conditional Median)

• Quantile loss (Conditional Quantile)

• ZeroOne loss (Conditional Mode).

2. Categorical response:

• Exponential loss

• Cross-Entropy loss

3. Other response:

• MLE loss

• Custom loss

The framework allows for the use of custom loss functions. One example of their application is in

quantitative finance and investment analysis, particularly in stock selection. At each rebalance date, we

16

have a multitude of factors denoted by Ft ∈ Rm×N , where m is the number of factors and N is the number

of stocks. These factors include historical prices, financial ratios, and technical indicators. Our goal is to

combine these factors into a vector αt ∈ RN and then use a given strategy to obtain indicators like Sharpe

ratio or excess alpha of future retures. This can be viewed as a custom loss function.Specifically, we can

represent the result at time t as

resultt = Strategyt ◦ f ◦ Ft

= Strategyt ◦ αt.

In this situation, the custom loss functional can be expressed as

L : H → R, f 󰀁→ 1

T

T󰁛

i=1

Strategyt ◦ f ◦ Ft.

Here we use the L2 loss function for illustration.

Theorem 9. (L2 loss, general version)

Suppose (Ω,F , P) is a probability space, Y : Ω → R and X : Ω → Rp. The the solution of the following

argmin
f∈H

󰀂Y − f ◦X󰀂22 = argmin
f∈H

󰁝

Ω

(Y − f ◦X)2dP

is the function m : Rp → R, x 󰀁→ E(Y |X = x).

Theorem 9 provides ideas for choosing the loss function, but in practical applications, we also need to

estimate based on the sample. Therefore, we propose the following method of converting from the population

to the sample:

Y ∈ L1(Ω) =⇒ (y1, y2, · · · , yn)′ ∈ Rn.

f ◦X ∈ L1(Ω) =⇒ (f(x1), f(x2), · · · , f(xn))
′ ∈ Rn.

that is, to use two vectors in Rn to approximate the distance between random variables.

Theorem 10. (L2 loss, empirical version)

Suppose D = {(yi, xi) : i = 1, 2, · · · , n} is a sample from (Y,X). Then the conditional expectation of Y given

X can be approximated by

argmin
f∈H

1

2n

n󰁛

i=1

(yi − f(xi))
2.

17

3.2 Base Learners

The base learn also plays importtant roles in model design since the GBM can be seen as the linear com-

bination of base learners. In this section, we will introduce some base estimators which was widely used in

practice.

Initially, we define the base-learners as a group of functions that map Rp to R. It is not necessary for it

to be a Hilbert space, nor even a vector space. Therefore, we refer to it as a collection of functions instead

of a function space. In practice, there are three types of base-learners.

Type Base-Learner

Linear models Affine functions

Smooth models P-splines

Kernel functions

Decision trees Decision tree

Table 2: Base Learners

Among the most prevalent base-learners are decision trees. Decision trees, regarded as simple-measurable

functions, can approximate Borel-measurable functions in the Lp norm, thereby demonstrating their uni-

versality. The decision tree algorithm operates by recursively partitioning the data into subsets based on

the values of a specific input feature until a predetermined stopping criterion is fulfilled. The outcome is a

tree-like structure, with each internal node representing a decision predicated on a feature’s value, and each

leaf node signifying a final decision or prediction.

Decision trees offer several advantages. They are straightforward to interpret and visualize, which aids

in comprehending the decision-making process of a model. Additionally, they can handle both categorical

and numerical data, making them versatile for different types of datasets, whether small or large.

3.3 Combine different base learners

In constructing a GBM model, the choice of base learners is not restricted, which allows for the incorporation

of multiple classes of base learners simultaneously. Various studies have explored the selection of different

types of base learners, including Generalized Linear Models (GLMs), Kernel functions, splines, among others.

Some research efforts have even attempted to integrate diverse types of base learners within the boosting

framework. For instance, studies by Sigrist [10] and Hoffmann [5] achieved reduced bias and error by

combining various types of base learners. We encapsulate these concepts in Algorithm 4.

18

Algorithm 4: The Combined Gradient boosting algorithm

Data: D = {(y1, x1), · · · , (yn, xn)}

Input:

• the hypothesis Hk and the reproducing kernel K.

• the empirical loss function L : H → R

• number of iterations M ≥ 1

• leanring rate η ∈ (0, 1]

1 Initialize f0, f0(x) = argminc∈R
1
n

󰁓n
i=1 L(yi, c) for all x ∈ Rp.

2 while m ∈ {1, · · · ,M} do

3 Calculate the negative gradient vector:

gm,j = − 1

n

n󰁛

i=1

∂2L(yi, fm−1(xi))K(xi, xj), j = 1, 2, · · · , n.

4 Fit the gradient vector:

h(k)
m = argmin

h∈Hk,β

n󰁛

i=1

(gm,i − βh(xi))
2

5 Find the best base learner and step size:

ρm, k∗ = argmin
ρ,k

L(fm−1 + ρh(k)
m)

6 Update:

fm ← fm−1 + ηρmh(k∗)
m

7 end

Output: fM = f0 +
󰁓M

i=1 ηρmh
(k)
m

At each step, we use different types of learners to approximate the revised negative gradient vector. Then,

in step 5, we choose the one that minimizes the empirical loss at this step. Finally, the output model is a

linear combination of different types of base learners.

3.4 Regularization

3.4.1 subsample

Subsampling is a technique used in machine learning to improve the overall performance of models by

reducing overfitting. This involves randomly selecting a subset of the training data for each iteration of the

learning algorithm. By doing so, the variance of the model can be reduced, and it can prevent learning

unnecessary noise in the data. The gradient descent algorithm based on subsample is commonly referred to

as the stochastic descent algorithm (SGD). Empirical evidence has shown that the model trained by SGD

19

often yields better results, which is presented in algorithm 5. Suppose we have M batches such that:

M󰁞

t=1

Bt = {1, 2, · · · , n}.

Algorithm 5: The Revised Stochastic Gradient boosting algorithm

Data: D = {(y1, x1), · · · , (yn, xn)}

Input:

• the hypothesis H and the reproducing kernel K.

• the empirical loss functional L : H → R

• number of iterations M ≥ 1

• leanring rate η ∈ (0, 1]

• stochastic batches: Bt, t = 1, · · · ,M.

1 Initialize f0, f0(x) = argminc∈R
1
n

󰁓n
i=1 L(yi, c) for all x ∈ Rp.

2 while m ∈ {1, · · · ,M} do

3 Calculate the gradient vector:

gm,j = − 1

|Bm|
󰁛

i∈Bm

∂2L(yi, fm−1(xi))K(xi, xj), j ∈ Bm.

4 Fit the gradient vector:

hm = argmin
h∈H,β

󰁛

i∈Bm

(gm,i − βhm(xi))
2

5 Find the best gradient descent step-size:

ρm = argmin
ρ∈R

L(fm−1 + ρhm)

6 Update:

fm ← fm−1 + ηρmhm

7 end

Output: fM = f0 +
󰁓M

i=1 ηρmhm

The difference is that, we apply a stochastic batch Bm to calculate the negative gradient.

3.4.2 step size

The step-size, or learning rate, is a critical hyperparameter in the gradient descent algorithm. It determines

the magnitude of the update to the model parameters during each iteration. A large step-size can cause the

algorithm to diverge, while a small step-size can result in slow convergence. The learning rate can also be

thought of as the weight of the base learners. If the learning rate is too high, the algorithm will focus too

20

much on the front part, which can reduce performance.

3.5 RGBoost

Figure 2: framework of rgboost

This subsection presents the RGBoost module1. This module, based on the Python class GradientBoost-

ingRegressor (Classifier) from the sklearn.ensemble package, is designed to yield consistent results. Unlike

GradientBoostingRegressor, which restricts the base learner to decision trees, RGBoost supports the amalga-

mation of multiple base learners. This includes the combination function proposed by Sigrist[10]. Moreover,

RGBoost integrates the gradient correction scheme proposed in this paper. One notable characteristic of

our module is the versatility of the estimator class. In essence, any model with the ”fit” and ”negative

gradient” attributes can serve as an estimator. This flexibility allows us to boost various models, such as

neural networks, SVMs, GLMs, and even boosted models.Furthermore, we define the collections of different

types of Estimator classes as a CombinedEstimator class. Similar to individual Estimator classes, the Com-

binedEstimator class also possesses ”fit” and ”negative gradient” attributes and, therefore, can be embedded

within the GBM class.

1rgboost is available at https://github.com/nymath

21

4 Application

This section demonstrates the application of the gradient boosting machine to function approximation.

Specifically, we employ a synthetic dataset simulated from the sinc function2. The simulated sinc dataset, a

common benchmark for assessing regression models, comprises 200 data points evenly distributed between

-10 and 10. These points are derived from a noisy sinc function, defined as sinc(x) = sin(x)/x, with Gaussian

noise of mean 0 and standard deviation 0.1 added to the true function. The objective of the regression task is

to learn the underlying function from this noisy data. The simulated sinc dataset serves as an effective tool

for evaluating the precision and generalizability of various regression models, including gradient boosting

models.

4.1 Function Approximation

In this subsection, we apply the revised gradient boosting machine to a simulated dataset. The sinc function

dataset was divided into training and testing sets, with the model trained on the former and evaluated using

the latter.

Figure 3 illustrates the results. We initially compared the performance of the Gradient Boosted Decision

Trees (GBDT) on the testing set. The model leveraging the revised gradient approach (denoted by the blue

curve on the learning curve) demonstrated a faster initial descent rate and lower testing error. For kernel-

based learners (Gaussian kernels used for illustrative purposes), the gradient-enhanced model significantly

reduced testing errors during the early iterations, but it gradually converged post-200 iterations. When we

combined Reproducing Kernel Hilbert Space (RKHS) with decision trees, the testing error didn’t consistently

improve, which is understandable given our goal of fitting a smooth function, where the RKHS-based gradient

boosting model has a natural advantage. Consequently, the combined model didn’t outperform the individual

models, as expected.

Figures 3 and 4 portray the model fitting process. It is evident that the revised gradient boosting

algorithm (represented by the blue curve) better approximates the sample points and achieves favorable

results with few iterations while maintaining other parameters constant. It’s noteworthy that due to the

small sample size, the model quickly begins to overfit. Moreover, when the base learner is an RKHS, the

improved model can also accelerate the model’s convergence speed.

2See https://www.rdocumentation.org/packages/qrnn/versions/1.1.3/topics/sinc

22

Figure 3: Test MSE versus the number of iteration for comparing GBM with/without revised gradient.

23

Figure 4: Training process of GBDT.

24

Figure 5: Training process of GBM based on RKHS.

25

5 Conclusion

This paper presents a new gradient boosting algorithm called RGBoost, which enhances the accuracy of

the gradient function approximation by modifying the negative gradient at each iteration. We define the

gradient function strictly using the Riesz representation theorem and demonstrates that the gradient vector

in the conventional gradient boosting algorithm is biased if the hypothesis is a Reproducing Kernel Hilbert

Space (RKHS). The updated model performs significantly better than the previous model in simulated data

and is subsequently applied in quantitative finance. The paper also includes an overview of related works in

gradient boosting and ensemble learning, and describes the self-developed RGBoost module in Python.

26

A Appendix

A.1 Proof of Theorem 5

Proof. From the chain rules we have the following

DL,f =
1

n

n󰁛

i=1

DL◦Exi
,f

=
1

n

n󰁛

i=1

DL,f(xi) ◦DExi
,f .

In addition,

DL,f (h) =
1

n

n󰁛

i=1

DL,f(xi) ◦DExi
,f ◦ h

=
1

n

n󰁛

i=1

∂2L(yi, f(xi))〈Kxi
, h〉

= 〈 1
n

n󰁛

i=1

∂2L(yi, f(xi))Kxi
, h〉.

Now the Riesz representation theorem suggests that the gradient of L at f is the first element in the inner

product notation.

A.2 Proof of Theorem 6

Proof. First suppose that g ◦ f is a simple measurable function on Ω, that is

g ◦ f =

n󰁛

k=1

ckχFk
, Fk ∈ F .

Easy to verify that

g ◦ f ◦ f−1 =

n󰁛

k=1

ckχf(Fk),

27

Also, we have

󰁝

R
g ◦ Idµf =

󰁝

R

n󰁛

k=1

ckχf(Fk)dµf

=

n󰁛

k=1

ckµf ◦ f(Fk)

=

n󰁛

k=1

ckP ◦ f−1 ◦ f ◦ Fk

=

n󰁛

k=1

ckP (Fk)

=

󰁝

Ω

g ◦ fdP.

Since the simple-measuralbe functions are dense in L1(Ω,F , P), we claim that equation 6 holds if g ◦ f ∈

L1(Ω,F , P).

A.3 Proof of Theorem 8

Proof. From theorem 14 we know that m ◦X is F-measurable. Next we need to verify whether the partial

average of m ◦X equals to that of Y .

󰁝

A

m ◦XdP =

󰁝

Ω

χAm ◦XdP

=

󰁝

Rp

χX(A)(x)m(x)dµX(x)

=

󰁝

Rp

χX(A)(x)m(x)fX(x)dλp(x)

=

󰁝

Rp

χX(A)(x)fX(x)

󰁕
R yf(x, y)dλ(y)

fX(x)
dλp(x)

=

󰁝

Rp

󰁝

R
χX(A)(x)yf(x, y)dλ(y)dλ

p(x)

=

󰁝

Rp+1

χX(A)(x)ydµX,Y (x, y)

=

󰁝

A

Y dP,

where the second and last equaty follows from Theorem 6. According to the definition of conditional

expectation, we know that m ◦ X is the conditional expectation of Y with respect to the sigma algebra

generated by X.

28

B Properties of Conditional Expectation

Defintion 11 (The conditional Expectation with respect a sigma-algebra).

Suppose G is sub-sigma-algebra of F , Y is random variable. A random variable M is called the conditional

expectation if

1. M is G-measurable.

2. ∀A ∈ G,
󰁕
A
XdP =

󰁕
A
MdP .

M is often denoted by E(X|G).

Theorem 12 (Radon-Nikodym Theorem).

Suppose µ is a sigma-finite measure on a measurable space (X,S). Suppose ν is a sigma-finite on X,S such

that ν << µ. Then there exists h ∈ L1(µ) such that

dν = hdµ.

Defintion 13. The conditional Expectation with respect a random map

Suppose X is measurable map from Ω to E(e.g. Rp) and Y is a random variable, then the conditional

expecation of Y with respect to X is defined as

E(Y |X) = E(Y |X−1(E)).

Theorem 14. Suppose X : Ω → E, then Y : Ω → R is σ(X)-measurable if and only if there exists

h : E → R, h ∈ E , such that

Y = h ◦X.

29

References

[1] L. Breiman. Random forests. Machine learning, 45:5–32, 2001.

[2] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou,

et al. Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4):1–4, 2015.

[3] Y. Freund, R. E. Schapire, et al. Experiments with a new boosting algorithm. In icml, volume 96, pages

148–156. Citeseer, 1996.

[4] J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics,

pages 1189–1232, 2001.

[5] F. Hoffmann. Combining boosting and evolutionary algorithms for learning of fuzzy classification rules.

Fuzzy Sets and Systems, 141(1):47–58, 2004.

[6] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly

efficient gradient boosting decision tree. Advances in neural information processing systems, 30, 2017.

[7] A. Natekin and A. Knoll. Gradient boosting machines, a tutorial. Frontiers in neurorobotics, 7:21, 2013.

[8] M. Schmid, T. Hothorn, K. O. Maloney, D. E. Weller, and S. Potapov. Geoadditive regression modeling

of stream biological condition. Environmental and Ecological Statistics, 18:709–733, 2011.

[9] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In Computational Learn-

ing Theory: 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European

Conference on Computational Learning Theory, EuroCOLT 2001 Amsterdam, The Netherlands, July

16–19, 2001 Proceedings 14, pages 416–426. Springer, 2001.

[10] F. Sigrist. Ktboost: Combined kernel and tree boosting. Neural Processing Letters, 53(2):1147–1160,

2021.

30

